Previous Year Question Paper of LPUNEST (B.Tech)

Section - English

This section contains **30 Multiple Choice Questions**. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

1.	Select the answer choice that identified It will take all of your energy and will to						
	a) take b) all	c) en	_		d) your	•	
2	What does 'it' refer to?	0) 011	orgy		d) your		
	Dad, can you take my coat and drop i	t off at the d	rv cleaner's	2			
	a) Dad b) Dry cleaner's				d) Drop		
2	, , ,	•			u) Diop		
ა.	Choose the correct order of adjectives	s to till trie b	ialik.				
	He was wearing a shirt.	ما ما ام	the old flower	-1	d) ald flow	سنام امص	.4
	a) flannel old dirty b) old dirty flanne	•	ty old flann	eı	d) old flan	inei air	τy
4.	Which kind of adverb is the word in ca	•	. (l		. "		
	"The watchman FREQUENTLY make			-). ¨		
	a) Adverb of Place		dverb of Deg	-			
_	c) Adverb of Time/Frequency		dverb of Ma	nner			
5.	Choose the right option to fill the gap.						
	At three o'clock tomorrow, I	-					
	a) Working	•	ill be workir	•			
	c) 'll be working	,	oth Will be v	vorking	and 'll be	workii	ng
6.	Choose the right option to fill the gap.						
	Trish Stratus women's cha		-				
	a) Will win b) Would win		ill have won	1	d) Will be	won	
7.	Choose the right option to fill the gap.						
	The train very soon.						
	a) arrive	b) wi	ll have arriv	ed			
	c) will arrive	d) bo	th will have	arrive	d and will	arrive	
8.	Choose the right modal verb.						
	There are plenty of dresses in the alm	irah.You _		buy	any.		
	a) will not b) must not	c) ma	ay not		d) should	not	
9.	Choose the incorrect use of modal ve	rb.					
	a) Arif wouldn't eat garlic when he wa	s a kid.					
	b) Arif wouldn't eat garlic when he is a	ı kid.					
	c) Arif will not eat garlic when he was						
	d) Arif wouldn't eat garlic when he will	a kid.					
10.	The sentence below contains an error	. Identify the	e error and	choose	the corre	ct opti	on.
	For Seema, Mohan is too important for	-				•	
	a) At tolerating b) With tolerating	•	tolerating		d) To tole	rate	
11.	Select the answer choice that identifie	•	•		,		
	The works of many great			een	placed	on	reserve
	, ,	c) placed) reser	•		
12.	What does 'it' refer to?	, p.2.50	u,	,			
	They've just closed the post office and	d turned it in	to a coffee	shon			
		c) Coffee sh) Close	ed		
13	Choose the correct order of adjectives	•	•	, 0.000	· ~		
	Pass me the cups.		iarii.				
	. acc inc arc caps.						

	a) plastic blue big b) plastic big blue	e c) big b	lue plastic	d) big blue plastic	
14.	14. Which kind of adverb is the word in cap	itals?			
	"When he knocked on the door, he was	asked to co	me INSIDE."		
	a) Adverb of Manner b)	Adverb of Ti	me/Frequency		
	c) Adverb of Place d)		•		
	15. Choose the right option to fill the gap.		J		
	At eight o'clock next week, you	on the be	ach.		
	a) lying b) lied	c) will b		d) will be layir	na
16.	16. Choose the right option to fill the gap.	0, 11111 2	9	, 20 lay	.9
	Ronda Rousey her flat by the	e time vou re	ach vour home		
	a) Will have reached b) Is reaching	-	•		
17	17. Choose the right option to fill the gap.	3, 1133			
	I the Hollywood movie The	Predator to	morrow	,	
	a) will watch b) watch		ave watched	d) both a and	C
18	18. Select the answer choice that identifies	•		a) bout a and	Ü
	The Brooklyn Bridge was opened in 188		and demonde.		
	a) Bridge b) was c) ope		1		
19.	19. What does 'it' refer to?	.,			
	I put my coffee cup on the shelf next to	the phone a	nd now it's don	e!	
	a) Coffee cup b) Phone c) She				
20.	20. Choose the correct order of adjectives t	· ·			
	All the girls fell in love with the				
	a) handsome new American b) Am		andsome		
	c) new handsome American d) American				
21.	21. Which kind of adverb is the word in cap				
	"The airline passengers were COMPLE		sted after their	lona fliaht."	
	a) Adverb of Manner b) Adv			99	
	c) Adverb of Place d) Adv				
22.	22. Choose the right option to fill the gap.	J			
	At five o'clock day after tomorrow, he	for	the train.		
	a) wait b) has waited c) will hav			e waiting	
23.	23. Choose the right option to fill the gap.		,	J	
	Romeoa new car when you m	neet him tom	orrow in the sh	owroom.	
	a) Will be purchasing b) Purchase				
24.	24. Choose the right option to fill the gap.	,	•	,	
	Ranveer PTE in December.				
	a) Will qualify b) Will be qualified	c) Will have	e qualify d) V	Vill have been qualifyi	ing
25.	25. Select the answer choice that identifies	•			
	Sparta and Athens were	enemies	during the	Peloponnesian	War.
	a) and b) were c)	during	d) war		
26.	26. What does 'they' refer to?				
	I asked at several shops for strawberrie	s and the ov	ners all told m	e they are out of seas	on.
			d) Season		
27.	27. Choose the correct order of adjectives t	o fill the blar	nk.		
	I used to drive car.				
	a) a blue old German b)	an old Germ	nan blue		

	c) an old blue German	d) a old German blue		
28. Which kind of adverb is the word in capitals?				
	"Arvind coughed LOUDLY to at	tract attention."		
	a) Adverb of Place	b) Adverb of Degree		

c) Adverb of Time/Frequency d) Adverb of Manner

29. Choose the right option to fill the gap. By the time you reach New Jersey, she in New York.

a) Will shop b) Will be shopping c) Will be shipping d) Both b and c

30. Choose the right option to fill the gap.

My cousin _____ her enrollment in the Indian military by the time I graduate

a) Will have completing

b) Will have complete

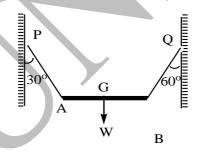
c) Will have completed

d) Will have been completing

Section – Physics

This section contains 30 Questions (25 Multiple Choice Questions and 5 Fill in the Blanks). Each Multiple choice question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct. For Fill in the Blank type question, enter the correct numerical value upto TWO decimal places.

1. A bullet of mass 50gm is fired from a gun of mass 2kg.If the total KE produced is 2050J the energy of the bullet and the gun separately are


a) 200J, 5J

b) 2000J, 50J

c) 5J, 200J

d) 50J, 2000J

2. A non-uniform rod AB of weight w is supported horizontally in a vertical plane by two light strings PA and PB as shown in the figure. G is the centre of gravity of the rod. If PA and PB make angles 30° and 60° respectively with the vertical, the ratio $\frac{AG}{GR}$ is

a) $\frac{1}{2}$

b) $\sqrt{3}$

3. If I_1 is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass and I2 is the moment of inertia of ring about an axis perpendicular to plane of ring and passing through its centre formed by bending the rod,

a) $\frac{I_1}{I_2} = \frac{3}{\pi^2}$ b) $\frac{I_1}{I_2} = \frac{2}{\pi^2}$ c) $\frac{I_1}{I_2} = \frac{\pi^2}{2}$

4. Object distance, $u = (50.1 \pm 0.5)$ cm and image distance $v = (20.1 \pm 0.2)$ cm then focal length is

a) (12.4 ± 0.4) cm

b) (12.4 ± 0.1) cm

c) (14.3 ± 0.4) cm

d) (14.3 ± 0.1) cm

5. For motion of an object along the x axis. The velocity V depends on the displacement x as $V = 3x^2-2x$. Then what is the acceleration at x=2m?

a) 48 m/s²

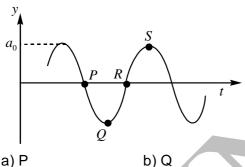
b) 80 m/s²

c) 18 m/s²

d) 10 m/s²

6. Vector \bar{a} and \bar{b} include an angle θ between them if $\left(\bar{a}+\bar{b}\right)$ and $\left(\bar{a}-\bar{b}\right)$ respectively subtend angle α and β with a, then $(\tan \alpha + \tan \beta)$ is

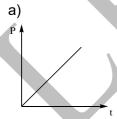
a)
$$\frac{ab\sin\theta}{a^2+b^2\cos^2\theta}$$

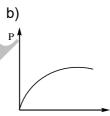

b)
$$\frac{2b\sin\theta}{a^2-b^2\cos^2\theta}$$

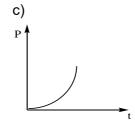
c)
$$\frac{a^2 \sin^2 \theta}{a^2 + b^2 \cos^2 \theta}$$

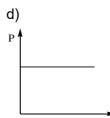
a)
$$\frac{ab\sin\theta}{a^2+b^2\cos^2\theta}$$
 b) $\frac{2b\sin\theta}{a^2-b^2\cos^2\theta}$ c) $\frac{a^2\sin^2\theta}{a^2+b^2\cos^2\theta}$ d) $\frac{b^2\sin^2\theta}{a^2-b^2\cos^2\theta}$

- 7. The mass of a spaceship in 1000kg. It is to be launched from the earth's surface out into free space. The value of 'g' and 'R' (radius of earth) are 10 m/s2 and 6400 km respectively. The required energy of this work will be:
 - a) 6.4×10^{11} Joules b) 6.4×10^{8} Joules c) 6.4×10^{9} Joules d) 6.4×10^{10} Joules

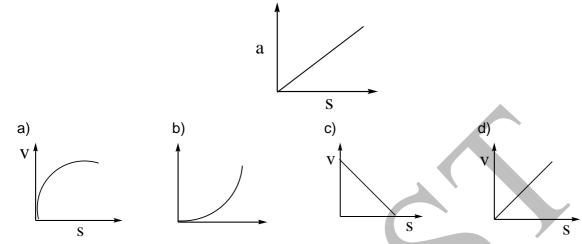

- **8.** A particle of mass 10 gm is in a potential Field given by $V = \left(50x^2 + 100\right)$ J/kg. The frequency of its oscillation in cycle/sec is
 - a) $\frac{10}{}$
- c) $\frac{100}{\pi}$
- d) $\frac{50}{\pi}$
- **9.** A wave motion has the function $y = a_0 \sin(\omega t kx)$. The graph in figure shows how the displacement y at a fixed point varies with time t. Which one of the labelled points shown a position displacement the equal that




c) R

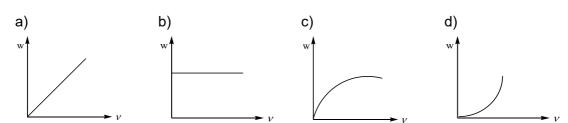

- d) S
- 10. A balloon of mass M is descending at a constant acceleration α . When a mass m is released from the balloon it starts rising with the same acceleration α. Assuming that its volume does not change, what is the value of m?
 - a) $\left(\frac{\alpha}{\alpha + \alpha}\right) M$

- b) $\left(\frac{2\alpha}{\alpha+g}\right)M$ c) $\left(\frac{\alpha+g}{\alpha}\right)M$ d) $\left(\frac{\alpha+g}{2\alpha}\right)M$
- 11. A motor drives a body along a straight line with a constant force. The power P developed by the motor must vary with time t as


12. A cubical block of side 'a' is moving with velocity 'v' on a horizontal smooth plane as shown in figure. It hits a ridge at point O. The angular speed of the block after it hits 'O' is

- b) $\frac{3v}{2a}$ c) $\sqrt{\frac{3}{2}}a$
- d) $\frac{4v}{3a}$
- **13.** A particle of mass m=5 unit is moving with a uniform speed $v = 3\sqrt{2}$ unit is x-y plane along

460	line way 1	The magnitude	of an audor	mamantum	about ari	ain in
me	IIIIE $V=X+4$.	The magnitude	oi andulai	momentum	about one	นเท เร
						9


- a) Zero
- b) 60 units
- c) 7.5 units
- d) $40\sqrt{2}$ units
- 14. Acceleration (a) displacement (s) graph of a particle moving in a straight line is as shown in figure. The initial displace velocity of the particle is zero. The v-s graph of the particle would be?

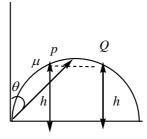
- **15.** If $\overline{A} + \overline{B} + \overline{C} = 0$ then $\overline{A} \times \overline{B}$ is equal to
 - a) $\overline{B} \times \overline{C}$
- b) $\overline{C} \times \overline{B}$
- c) $A \times C$
- d) None of these
- 16. A particle is released from a height H. At certain height its kinetic energy is two times its potential energy. Height and speed of particle at that instant are
- b) $\frac{H}{3}$, $2\sqrt{\frac{gH}{3}}$ c) $\frac{2H}{3}$, $\sqrt{\frac{2gH}{3}}$ d) $\frac{H}{3}$, $\sqrt{2gH}$
- **17.** A ladder of length I and mass m is placed against a smooth vertical wall, but the ground is not smooth. Coefficient of friction between the ground and ladder is μ . The angle θ at which the ladder will stay in equilibrium is

- a) $\theta = \tan^{-1}(\mu)$ b) $\theta = \tan^{-1}(2\mu)$ c) $\theta = \tan^{-1}(\frac{\mu}{2})$ d) $\theta = \tan^{-1}(\frac{1}{2\mu})$
- 18. A solid sphere and a solid cylinder of same mass are rolled down on two inclined planes of heights h₁ & h₂. If at the bottom of the plane of two objects have same linear velocities, then ratio of h₁ to h₂ is
 - a) 2:3
- b) 7:5
- c) 14:15
- d) 15:14
- **19.** You measure two quantities as $A = 1.0 \text{ m} \pm 0.2 \text{ m}$, $B = 2.0 \text{ m} \pm 0.2 \text{ m}$. What should report correct value for \sqrt{AB} as
 - a) $1.4 \text{ m} \pm 0.4 \text{ m}$
- b) $1.41 \text{ m} \pm 0.51 \text{ m}$
- c) $1.4 \text{ m} \pm 0.3 \text{ m}$
- d) $1.4 \text{ m} \pm 0.2 \text{ m}$
- 20. The area of the acceleration displacement curve of a body gives
 - a) Impulse

- b) Changing momentum per unit mass
- c) Change in K.E per unit mass
- d) Total change in energy
- 21. A particle at rest on a frictionless table is acted upon by a horizontal force which is constant in magnitude and direction. A graph is plotted for the work done on the particle W, against the speed of the particle ν . If there are no frictional forces acting on the particle the graph will look like

- 22. A uniform rod of length L and mass 3m is held vertically hinged at its base. A mass 'm' moving horizontally with a velocity v strikes the rod at the top and sticks to it. The angular velocity with which the rod hits the ground is

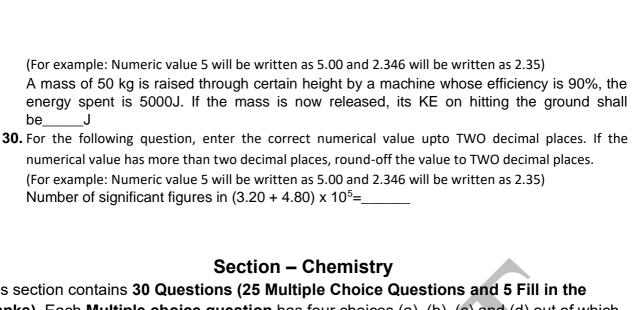
- b) $\sqrt{\frac{5g}{2L} + \frac{v^2}{4L^2}}$ c) $\sqrt{\frac{g}{2L} + \frac{v^2}{L^2}}$ d) $\sqrt{\frac{g}{5L} + \frac{4v^2}{L^2}}$
- 23. Moment of inertia of a thin rod of mass M and length L about an axis passing through its centre is $\frac{ML^2}{12}$. Its moment of inertia about a parallel axis at a distance of $\frac{L}{4}$ from this axis is
- b) $\frac{ML^3}{48}$


- **24.** In the relation $y = rsin(\omega t kx)$, the dimensional formula of ω/k are
 - a) $[M^0 L^0 T^0]$
- b) $[M^0 L^1 T^{-1}]$
- c) [M⁰ L⁰ T¹]
- d) $[M^0 L^1 T^0]$
- 25. A juggler maintains four balls in motion making each of them to rise a height of 20m from his hand. What time interval should be maintained for the proper distance between them?
 - a) 1.5s

- d) 2s
- 26. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35) A mass of 3kg descending vertically downwards supports a mass of 2kg by means of a light

string passing over a pulley. At the end of 5s the string breaks. How much high from now the 2kg mass will go?

27. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)


A particle is thrown with velocity u making angle θ with vertical, it just crosses the top of two poles each of height h after 1s and 3s respectively. The maximum height of projectile

28. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)

An elevator and its load have a total mass of 800kg. If the elevator, originally moving downward at 10ms⁻¹ is brought to rest-with constant deceleration in a distance of 25m, the tension in the supporting cable will be N [take g=10ms⁻²].

29. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places.

	Trumber of Significant figures in (0.20) 4.00	5) X 10 =						
Blank ONLY	Section – Chemistry This section contains 30 Questions (25 Multiple Choice Questions and 5 Fill in the Blanks). Each Multiple choice question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct. For Fill in the Blank type question, enter the correct numerical value upto TWO decimal places.							
1.	After rounding 1.245 and 1.235 to three	significant figures, we	e will have their answers					
	respectively as a) 1.24, 1.23 b) 1.23, 1.23	c) 1.23, 1.24	d) 1.24, 1.24					
2.	A manifestation of surface tension is: a) Spherical shape of liquid dropsc) Fall of liquid in a capillary tube	b) Down ward movem d) All of these	ent of water in soils					
3.	In hydrogen atom, energy of electron in gr second excited state is	ound state is 13.6 eV,	then energy of electron in					
4.	a) 1.51 eV b) 3.4 eV Octet rule is not followed in	c) 6.04 eV	d) 13.5 eV					
	a) CCl ₄ , N ₂ O ₄ and N ₂ O ₅ c) NaCl, MgCl ₂ , MgO	b) BF ₃ , BeCl ₂ and NO d) PCl ₃ , NH ₃ , H ₂ O	2					
5.	The enthalpy of vaporization of liquid is		entropy of vaporization is					
6.	$75JK^{-1}mol^{-1}$. The boiling point of the liquid a) 250 K b) 400 K The solubility of N ₂ (g) in water exposed to t 593mm, is $5.3 \times 10^{-4} M$. Its solubility at 760r	c) 450 K he atmosphere, when t	•					
	a) $4.1 \times 10^{-4} M$ b) $6.8 \times 10^{-4} M$	c) 1500 <i>M</i>	d) 2400 <i>M</i>					
7.	The Degree of disassociation ' $lpha$ ' of the re-	,	,					
	a) $\alpha = \frac{\frac{K_p}{P}}{4 + \frac{K_p}{P}}$ b) $\frac{K_p}{4 + K_p}$	$\begin{bmatrix} K \end{bmatrix}^{1/2}$	$d) \alpha = \left(\frac{K_p}{4 + K_p}\right)^{\frac{1}{2}}$					

In balanced reaction the coefficients of **8.** $MnO_4^- + Br^- + H_2O \rightarrow MnO_2 + BrO_3^- + OH$ MnO_4^- , BrO_3^- and OH^- are respectively:

a) 1, 1, 2

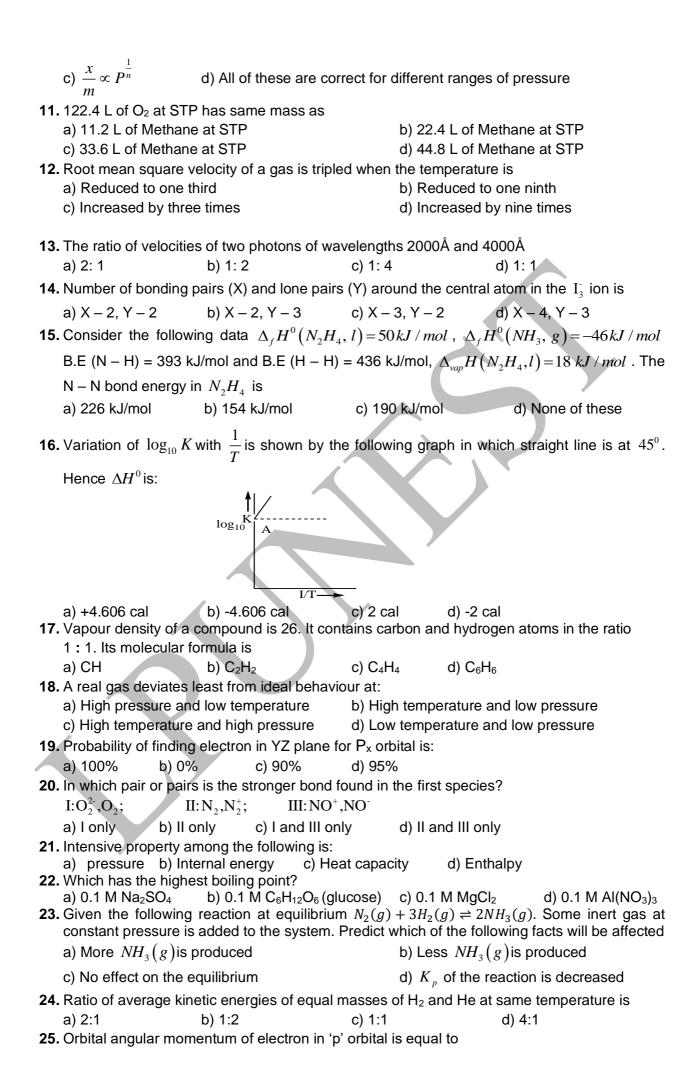
b) 2, 1, 4

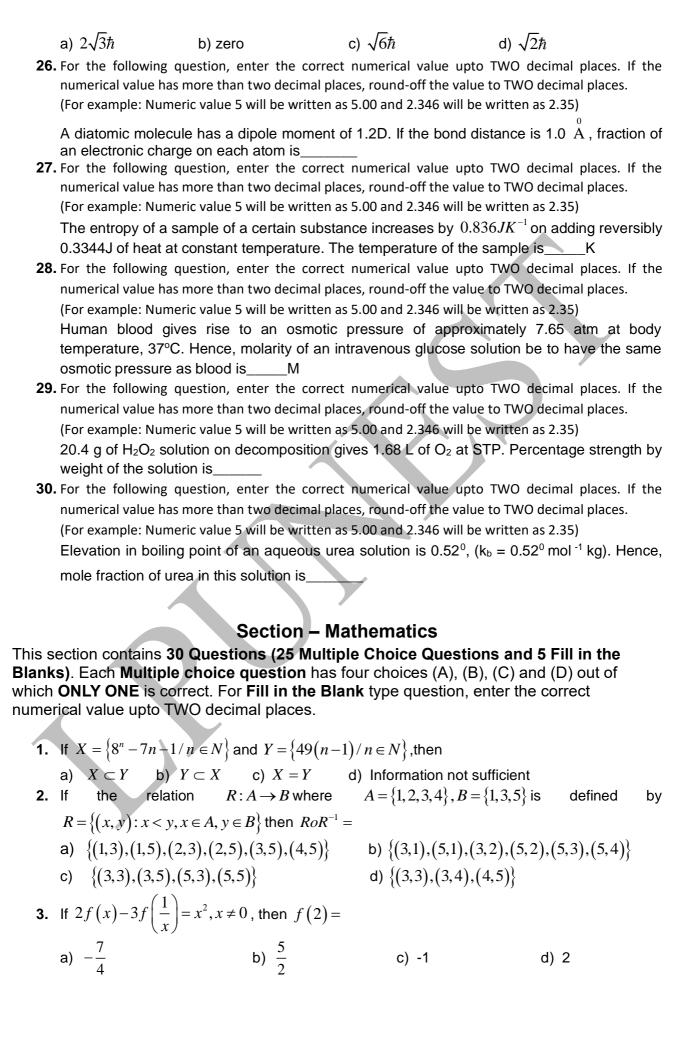
c) 2, 1, 2

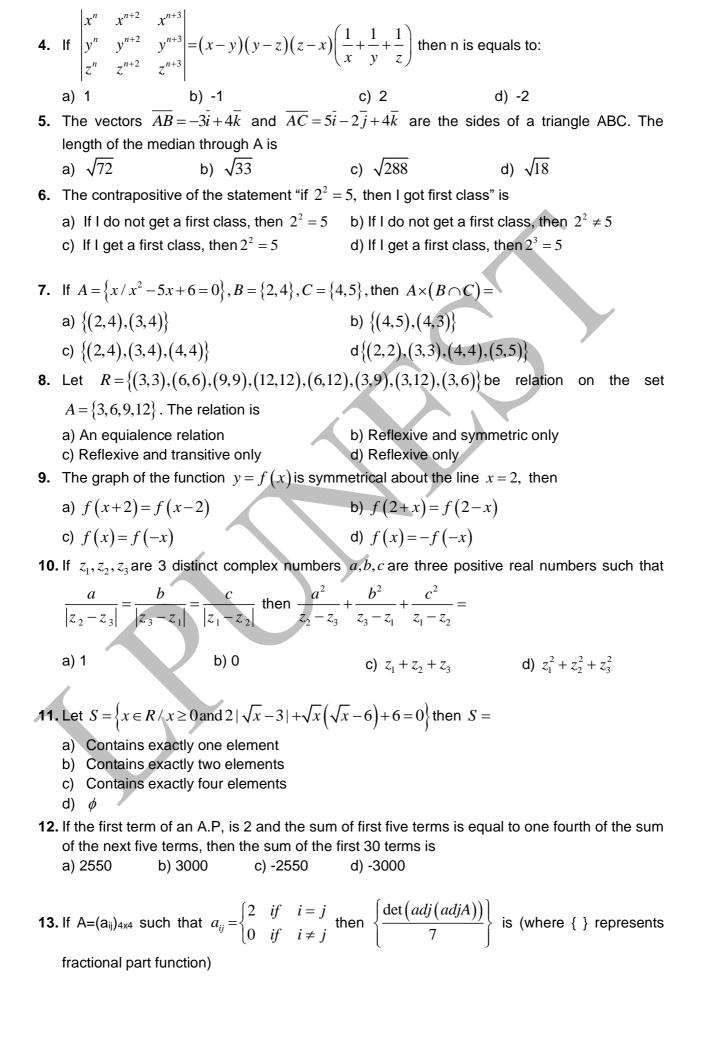
d) 1, 2, 2

9. The half-life of a first order chemical reaction is 60 hrs at 300 K. As temperature is increased to 310 K, half-life becomes 40 hrs. Determine the half-life of same reaction at 350 K.

a) 10 min


b) 160 min


c) 600 min


d) 6 hrs

10. According to Freundlich adsorption isotherm, which of the following is correct?

a)
$$x/m \propto P^0$$
 b) $\frac{x}{m} \propto P^1$

15. C is a c is	a) $\frac{1}{7}$	b) $\frac{2}{7}$	c) $\frac{3}{7}$		d) $\frac{4}{7}$					
15. C is a c 16. J a c 17. If a 18. If a 20. If a 22. F a c 23. If a 24. Z a 25. If	set A				another					Then
is a c c c c c c c c c c c c c c c c c c	a) $3 \le n(A \cup A)$,	`	,	· ·			`		
16. J 16. J 17. If 18. If 19. L 20. If 21. If 22. F 1 a c 23. If 24. Z	Consider the		set consisti	ing of c	hildren in a	a house,	conside	er a re	lation R; x	Ry if x
16. j 16. j 17. lf 18. lf 19. L 20. lf 21. lf 22. F Tac 23. lf 24. z	s brother of y a) Symmetric		sitive	b) Tra	nsitive but	not svm	metric a	ınd ref	lexive	
20. If a 22. F a c 23. If a 24. z a 25. If	c) Neither syn									
20. If a 22. F a c 23. If a 24. z a 25. If	$f: R \to R$ is	a fumation d	ofino al lov	£ (w) _	$e^{ x }-e^{-x}$	Than tia				
20. If a 22. F T a c 23. If a 24. z a 25. If	$f: K \to K$ is	a function de	etined by J	f(x) =	$\overline{e^x+e^{-x}}$.	i nen i is				
17. If a 18. If a 19. L a 20. If a 21. If a 22. F T a c 23. If a 24. z	a) One – one			-	e – one no					
a 18. If a 19. L a 20. If a 21. If a 22. F a 24. z a 25. If	c) Onto but no	ot one – one		a) Nei	ther one –	one nor	onto			
a 18. If a 19. L a 20. If a 21. If a 22. F a 24. z a 25. If	7 -77									
a 18. If a 19. L a 20. If a 21. If a 22. F a 24. z a 25. If	$f \left \frac{z_1 - 7z_2}{7 - z_1 \overline{z}_2} \right = 1$	I and $ z_2 \neq 1$	then $ z_1 $	£						
18. If a 19. L a 20. If a 21. If a 22. F T a c 23. If a 24. z a	1 -1 -2				1					
a 19. L 21. If a 22. F T a c 23. If a 24. z a	a) 0	b)1	c)7		d) $\frac{1}{7}$					
19. L 20. If a 21. If a 22. F a c 23. If a 24. z	f $lpha$ be a root	of the equat	tion, $4x^2$ +	2x-1 =	=0thenth	e other r	oot is			
20. If a 21. If a 22. F T a c 23. If a 24. z a	a) $-2\alpha - i$	b) 4	$4\alpha^2 + \alpha - 1$		c) $4\alpha^3$ –	3α	(d)	$4\alpha^2$ –	3α	
20. If a 21. If a 22. F T a c 23. If a 24. z	Let a_1, a_2, a_3	be te	erms of an	A.P. If						
20. If a 21. If a 22. F T a c 23. If a 24. z	$a_1 + a_2 + \dots$	$a_p p^2$	((a) Thou	a_6					
20. If a 21. If a 22. F T a c 23. If a 24. z	$\frac{a_1 + a_2 + \dots + a_1 + a_2 + \dots + a_1 + a_2 + \dots + a_1 + \dots + a_2 + \dots + \dots}{a_1 + a_2 + \dots + $	$\frac{1}{\dots a_q} = \frac{1}{q^2}$	$p \neq q$	(1) The	$\frac{1}{a_{21}}$					
a 21. If a 22. F T a c 23. If a 24. z							d) -	41/11		
a 21. If a 22. F T a c 23. If a 24. z	f $x \neq 0, y \neq 0$	[-	1+x 1	1	-					
22. F T a c 23. If a 24. z	$f x \neq 0, y \neq 0,$	$z \equiv 0$ and	1+y $1+2$	2y 1	=0 the	$n x^{-1} + y$	$z^{-1} + z^{-1} =$	=		
22. F T a c 23. If a 24. z			1+z $1+z$	_	,					
22. F T a c 23. If a 24. z	$A = \{(x, y) \mid A = \{(x, y) \mid $	b) -	2		c) -3	2 2	d) ·	-4		
22. F T a c 23. If a 24. z	$f A = \{(x, y) \mid$	$/x^2 + y^2 \le 4;$	$\{x,y\in R\}$	and $B =$	$= \{(x,y)/x\}$	$x^2 + y^2 \ge 9$	$\theta; x, y \in$	$R igr \}$,the	en	
23. If a 24. z a 25. If	$A - B = \phi$		•		•		-		•	
a c 23. If a 24. <i>z</i> a 25. If	For $x, y \in R$,	define a rela	ation R by	xRy if	and only	if $x-y$	$+\sqrt{2}$ is	an irr	ational nur	mbers.
c 23. If a 24. <i>z</i> a 25. If	Then R is									
23. lf a 24. <i>z</i> a 25. lf	a) An equivale c) Transitive	ence relation	1		b) Symm		ot symr	netric	& transitive	1
a 24 . <i>z</i> a 25 . lf		2rv)				ave but i	ot Syllii		a transitive	,
24. <i>z</i> a 25. If	$f y = \frac{1}{2} \sin^{-1} \left(\frac{1}{2} \sin^{-1} \left(\frac{1}{2} \right) \right)$	$\left(\frac{2xy}{x^2+y^2}\right)$ ar	nd y < x th	nen $\lim_{y\to 0}$	$\int_{0}^{\infty} x =$					
24. <i>z</i> a 25. If	a) -1	b) 0			c) 1		d)	∞		
25. If	z be a comple	ex number s	atisfying	$z-5i \mid \leq$	1 such tha	t amp z	is minim	num th	en $z =$	
25. If	a) $1+i2\sqrt{6}$	1	$+i2\sqrt{6}$		$2\sqrt{6}$	1 2 . [6]		$2\sqrt{6}$	a :2 E	
	$(1+i2\sqrt{6})$	b) -	5		c) $\frac{1}{5}$	1+12√6)	d)	5	$(1-i2\sqrt{6})$	
	f p,q,r are +	ve and are i	n A.P. the	roots o	f the equa	tion px^2	+qx+r	=0all	real for	
а	a) $\left \frac{r}{p} - 7 \right \ge 4$	$\sqrt{3}$ b) $\frac{1}{\sqrt{3}}$	$\begin{vmatrix} - & 1 \\ r & \end{vmatrix} \ge 4\sqrt{2}$	3	c) all p a	ana q	d)	NO p	and r	

- **26.** For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)

 After inserting n A.M.'s between 2 and 38, the sum of the resulting progressions is 200. The value of n is ______
- **27.** For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)

If α , β , γ and a,b,c are complex numbers such that $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$ and $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$

then the value of $\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2} =$ ____i.

28. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)

If $\alpha, \beta \in C$ are the distinct roots of the equation $x^2 - x + 1 = 0$ then $\alpha^{101} + \beta^{107}$ is equal to_____

- 29. For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)
 If 7 times of the 7th term of an AP is equal to 11 times of its 11th term, then 18th term of A.P is _____
- **30.** For the following question, enter the correct numerical value upto TWO decimal places. If the numerical value has more than two decimal places, round-off the value to TWO decimal places. (For example: Numeric value 5 will be written as 5.00 and 2.346 will be written as 2.35)

If
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$ then the value of the sum $tr(A) + tr\left(\frac{ABC}{2}\right) + tr\left(\frac{A(BC)^2}{4}\right) + tr\left(\frac{A(BC)^3}{8}\right) + \underline{\qquad} \infty = \underline{\qquad}$

Section - Biology

This section contains **30 Multiple Choice Questions**. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- 1. Quality of storing food using simple inorganic material belongs to plants which are
 - a) heterptrophs

- b) autotrophs
- c) both heterptrophs and autotrophs
- d) hypotrophs
- 2. Rank the following animal groups from greater to least (left to right) in the number of described species: Mammalia (mammals), Aves (Birds), Mollusca (clams, snails, etc), and Insecta
 - a) Mollusca, Aves, Insecta, Mammalia
- b) Insecta, Mollusca, Aves, Mammalia
- c) Insecta, Aves, Mammalia, Mollusca
- d) Mammalia, Aves, Insecta, Mollusca
- **3.** Epithelium that appears layered due to the varying levels at which nuclei are found in cells, but in reality is not layered, is
 - a) transitional epithelium

- b) pseudostratified columnar epithelium
- c) stratified squamous epithelium
- d) stratified columnar epithelium

- 4. Cell theory states
 - I. All living cells must have a cell wall.
 - II. All living cells require glucose for survival.

	III. The basic unit o	f life is a cell.		
	a) III only	b) I and II	c) Only I	d) None of these
5.	, -	soluble because lipid	, ·	,
	a) Hydrophilic	b) Neutral	c) Zwitter ions	d) Hydrophobic
_	5			
6.			te of transpiration will be	
_	•	2) 200,0000 1000	c) Increase	d) Remain unaffected
1.		•	wth and radioactive isoto	ope which is used in cancer
	therapy is known as		\ O	N G . F
_	a) Calcium	b) Iron	c) Cobalt	d) Sodium
8.	Quantasomes cont		ساليبط سمسماطم 2000 ما	
	a) 200 chlorophyll r		b) 230 chlorophyll m	
^	c) 250 chlorophyll r		d) 300 chlorophyll m	noiecules
9.	Glycolysis takes pla		a) Cutonla am	d) Chrom to a maga
40	a) Mitochondria	b) Peroxisomes	c) Cytoplasm	d) Glyoxysomes
10.	Coconut milk factor		a) Abasisis asid	d) Cutalinia
44	a) Auxin	, •	· ·	,
11.			nn and Karolene which	are Prokaryotes, Protoctista,
	Fungi, Animalia and		a) Proticto	d) vertebrates
42	a) eukaryotes	b) plantae	c) Protista	d) vertebrates
12.			ts where the primary pro	
	a) Organotrophic ba		b) Chemolithotrophi	C Daciena
12	c) Chemoorganotro	-	d) Methylotrophs	
13.	-	gina is covered with	b) pagudostratified (anith alium
	a) mucus, columna		b) pseudostratified e	-
11	c) stratified cuboidaProkaryotic genetic		d) stratified squamo	us
14.	a) Both DNA and h		b) DNA but no histo	nos
	c) Neither DNA nor		d) Either DNA or his	
15	ATP is	HISTORIES	d) Little! DIVA of file	stories
13.	a) Vitamin	b) Enzyme	c) Nucleotide	d) Nuclei acid
16	Guard cells help in	b) Liizyiiie	c) Nucleotide	d) Nuclei acid
10.	a) Protection		b) Fighting against i	nfection
	c) Guttation		d) Transpiration	Thechor
17		/ ollowing is not an esse	ential element for plants'	7
• • • •	a) Iron	b) Zinc	c) Potassium	d) lodine
18	,		e ex-situ conservation?	a) leane
	a) National park	b) Wildlife sanctua		d) Sacred groves
19.		•	distinguish animals from	,
		DNA in the cell nucle		
	,			oulse conduction and muscle
	tissue for movemer	- -	. Horvous decade for himp	value contaction and macon
		 ive structural support		
	d) Both b and c	ivo oli dolarar odpport	•	
20	Identify the INCOR	RECT statement		
_0.	•		of the epithelial cells in t	the surface laver
	•		layer of transitional epit	-
	•		-	contact with the basement
	, , , , , , , , , , , , , , , , , , , ,	1		

d) Desmosomes are an effective barrier to the diffusion of substances across an epithelium

21. Which of the following statements are true about Eukaryotes?

membrane

(1) They are cells	with a nucleus.				
(2) They are foun	d both in humans and m	nulticellular organisms.			
(3) Endoplasmic ı	reticulum is present in E	ukaryotes.			
(4) They have che	emically complexed cell	wall.			
a) (1), (3) and (4)	b) (1), (2) and (4)	c) (1), (2) and (3)	d) All of these		
22. Which of the follo	wing is non-reducing su	gar?			
a) Maltose	b) Lactose	c) Sucrose	d) Glucose		
23. The water readily	available to plants for a	bsorption by roots is			
a) Gravitational w	ater	b) Capillary water			
c) Rain water		d) Hygroscopic water	er		
24. Fat soluble vitami	ins are				
a) Soluble in alco	hol	b) one or more Prop	pene units		
c) Stored in liver		c) All of these	c) All of these		
25. Hot spots are reg	ions of high				
a) Rarity	b) Endemism		ered population d) Diversity		
	-		order from highest to lowes		
` •	ius, Family, Class, Orde				
, ,	, Class, Genus, Family		order, Family, Genus		
	, Class, Family, Genus		order, Family, Genus		
	tion source of developm				
a) Vinculin	b) Occludin	c) Basal lamina	d) Extra cellular matrix		
	from plant cells in poss				
a) Plastid	b) Entrosome	c) Vacoule	d) Golgi body		
29. Ketose sugar is					
a) Galactose	b) Fructose	c) Mannose	d) Glucose		
•	al of pure water at atmo				
a) Zero bar	b) +2.3 bar	c) one bar	d) -2.3 bar		
4					